OPTIMAL

The OPTIMAL project will integrate for the first-time different laser lithography technologies, quality monitoring systems and processes in one platform for the development of structures with (i) high depth (150 micrometer), ii) dimensions in the range from 100 nm to sub-mm in XYZ, iii) 2D&3D shape on flat surface, (iv) combining parallel & serial patterning, (v) no need for external treatments on samples; vi) increased speed (1 cm2/min) and large area (up to 2000 cm2), vii) > 40% of reduction in the consumption of resources for the whole manufacturing process. The OPTIMAL project uses self-learning algorithms to optimize the virtual photomask as well as integrates methods for an inline control of the laser patterning

Laser-based technologies that fabricate structures ranging in size from nanometres to millimetres have a variety of applications, including photonics, multifunctional surfaces and lab-on-a-chip. Laser lithography is used to produce these very fine structures, but its processes have several limitations. The EU-funded OPTIMAL project will combine for the first time various laser lithography technologies and quality monitoring systems into one platform to develop certain structures. It aims to speed up and improve the structuring procedure. This should boost the process efficiency and yield, thus minimising energy consumption, avoiding material waste, lowering costs and reducing lead-time in many applications.

Laser-based technologies for creating structures in the range from nanometer up to millimeter size find many applications such as free form optics, photonics, multifunctional surfaces, lab-on-chip, etc. with a global market volume of > 200 billion euros. The original structures know as masters are the first step in the making of tools for key-enabling technologies like injection molding or nanoimprinting. Some of the current limitations in the laser lithography processes are the limited depth of the structures, small area and low speed at process level, high-power consumption in the laser interference lithography, and multiple and expensive processes required for the development of hierarchical multifunctional structures at industrial level.
The OPTIMAL project will integrate for the first-time different laser lithography technologies, quality monitoring systems and processes in one platform for the development of structures with (i) high depth (150 micrometer), ii) dimensions in the range from 100 nm to sub-mm in XYZ, iii) 2D&3D shape on flat surface, (iv) combining parallel & serial patterning, (v) no need for external treatments on samples; vi) increased speed (1 cm2/min) and large area (up to 2000 cm2), vii) > 40% of reduction in the consumption of resources for the whole manufacturing process. The OPTIMAL project uses self-learning algorithms to optimize the virtual photomask as well as integrates methods for an inline control of the laser patterning.
By accelerating and upscaling the structuring process, the OPTIMAL project will increase the process efficiency and yield, which will reduce the energy consumption, avoid material waste, decrease costs, and lead time in many applications. The platform will potentiate the possibilities in the sustainable making of high quality, versatile, less costly masters for industrial manufacturing, as demonstrated in 4 use cases (optical lenses, multifunctional riblet structures, virtual reality lens, microfluidic chips).